PRATIQUE MATH

Accueil du site > APPROCHE PAR COMPETENCE ET SOCLE COMMUN > QUELS REPERES DE SAVOIRS MATHEMATIQUES POUR LES ELEVES EN FIN DE SCOLARITE (...) > Domaine du calcul numérique : Nombres et calculs > NOMBRES

NOMBRES

Les nombres et leurs écritures

vendredi 10 juillet 2009, par Alfred Bartolucci


Moi les calculs ça va mais dès qu’il y a des fractions, des racines carrées ou des + ou des - ça devient du chinois. Qu’elles explications pourraient aider un camarade à y voir plus clair dans tous les types de nombres ?

L’œil sait repérer des expressions diverses sur un visage mais a des difficultés à apprécier la quantité. Pour des objets isolés (un, deux, trois, quatre, cinq, …) la quantité d’objets est discernable par l’œil surtout si leur disposition est ordonnée. Mais « repérer combien il y en a » est plus difficile pour des quantités plus importantes d’objets surtout si leur disposition n’est pas ordonnée.

Trois grandes catégories de nombres en collège :

  • les nombres pour dénombrer des objets isolés : 0 ; 7 ; 153 ; .... ENTIERS NATURELS.
  • les nombres pour exprimer des mesures  : 7 ; 45,88 ; 43/4 ; 11/ 7 ; racine carré de 3 ; ... Les NOMBRES DECIMAUX permettent d’exprimer des mesures mais d’autres nombres expriment des mesures comme PI ; 4/3 ou racine carré de 5 . Un NOMBRE DECIMAL a des écritures à virgule, fractionnaires (41,2 = 412/10 = 206/5…) ...
  • les nombres pour se repérer sur une droite graduée avec un sens : NOMBRES RELATIFS. Il y a deux grandes catégories de nombres relatifs.
    • ceux pour exprimer une position en avant d’un point origine (ZERO) quand un sens a été choisi (droite graduée) : nombres relatifs POSITIFS.
    • ceux pour exprimer une position résultant d’un recul sur la droite graduée par rapport à l’origine (ZERO) : nombres relatifs NEGATIFS.

Les nombres sont d’abord définis par les problèmes qu’ils permettent de résoudre.

  • Quand on dit « il y a 3 absents en classe aujourd’hui » , le nombre 3 signifie une valeur entière naturelle. Je dénombre des personnes.
  • Quand on dit « j’aurais besoins de 3 mètres de grillage pour mon jardin », le nombre 3 exprime une mesure et dans ce cas particulier 3 peut être considéré comme un nombre décimal ! Une mesure peut s’exprimer par des écritures bien moins familières. Les nombres décimaux sont des nombres qui permettent de communiquer des mesures avec assez de précision.
  • Quand on dit « il y avait 3°C ce matin sur ma terrasse » , le nombre 3 exprime une valeur relative par rapport à zéro. S’il faisait plus froid la température pourrait-être de – 3°C !

Risque : Etre détourné des informations que portent les nombres dans les situations où ils sont donnés à cause de la forme de leurs écritures.

  • Certains nombres sont d’usage familier. On n’a pas de difficultés à tracer un rectangle de 6cmx4cm ou de 7,5cmx3,4cm.
  • D’autres nombres comme les fractions commencent à provoquer de l’embarras.
    Illustration : Si un rectangle est donné et qu’on nous demande de tracer un autre rectangle défini à partir du rectangle donné :
    • un côté est égal à 4/3 de la largeur
    • l’autre côté est égal à 3/4 de la longueur.

Spontanément beaucoup de personnes sont tentées de calculer les mesures sous leur forme « à virgule » avant de tracer le nouveau rectangle. C’est cela être détourné des informations que portent les nombres. Il est peu familier de tracer 4/3 d’une longueur on préfère passer par la multiplication de la mesure par 4 et par la division par 3. On obtient une écriture à virgule du nombre qui exprime cette grandeur et on dispose de la règle graduée pour réaliser le tracé. Une plus grande familiarité avec l’écriture fraction pourrait conduire à un partage du segment en trois part égales et à quatre reports. Si un tel procédé était familier, cela dissiperait le trouble que produit avec l’écriture fraction chez beaucoup de personnes. Chez certains, c’est comme si un nombre écrit en fraction n’était pas tout à fait un nombre : pour « sentir » la grandeur qu’il porte on a besoin de passer à une écriture décimale même si ce n’est qu’une approximation.

Le vrai risque ... c’est la peur

L’exemple qui suit, illustre qu’un calcul qui paraît hors de porté pour quelqu’un qui se sent en difficulté par rapport à de telles écritures peut très bien s’en sortir an gardant son calme.

Une remarque ?

Portfolio